The Zassenhaus variety of a reductive Lie algebra in positive characteristic
نویسندگان
چکیده
منابع مشابه
Involutions of reductive Lie algebras in positive characteristic
Let G be a reductive group over a field k of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For the case of a ground field of characteristic zero, the action of the isotropy group G on p is well understood, since the well-known paper of Kostant and Rallis [17]. Such a theory in positive characteristi...
متن کاملA ug 2 00 8 NILPOTENT BICONE AND CHARACTERISTIC SUBMODULE OF A REDUCTIVE LIE ALGEBRA
— Let g be a finite dimensional complex reductive Lie algebra and S(g) its symmetric algebra. The nilpotent bicone of g is the subset of elements (x, y) of g×g whose subspace generated by x and y is contained in the nilpotent cone. The nilpotent bicone is naturally endowed with a scheme structure, as nullvariety of the augmentation ideal of the subalgebra of S(g) ⊗C S(g) generated by the 2-orde...
متن کاملA Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
متن کاملThe Lie Algebra of Smooth Sections of a T-bundle
In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...
متن کاملOn the Restricted Lie Algebra Structure for the Witt Lie Algebra in Finite Characteristic
The Lie algebra W = DerA is called the Witt algebra. It consists of “vector fields” f∂, f ∈ A. In particular, dimF W = dimF A = p. As any Lie algebra of derivations of a commutative algebra over F, W has a canonical structure of a restricted Lie algebra. Recall that a restricted Lie algebra is a Lie algebra over F with an additional unary (in general, non-linear) operation g 7→ g satisfying the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2010
ISSN: 0001-8708
DOI: 10.1016/j.aim.2009.12.006